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We study the aging properties, in particular the two-time autocorrelations, of the two-dimensional randomly
diluted Ising ferromagnet below the critical temperature via Monte Carlo simulations. We find that the auto-
correlation function displays additive aging C�t , tw�=Cst�t�+Cag�t , tw�, where the stationary part Cst decays
algebraically. The aging part shows anomalous scaling Cag�t , tw�=C�h�t� /h�tw��, where h�u� is a nonhomoge-
neous function excluding a t / tw scaling.
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The phase ordering kinetics in pure systems has attracted
much attention in the last years �1�. A common scenario, for
instance, for ferromagnets after a fast quench from above to
below the ordering temperature is a continuous domain
growth governed by a single length scale that depends alge-
braically on the time tw after the quench. The existence of
this length scale quite frequently determines also the scaling
properties of other dynamical nonequilibrium quantities like
the two-time autocorrelation function C�t , tw�, which de-
scribes the correlations between the spin configurations at
the time tw after the quench and a later configuration at a
time t+ tw. It gives rise to what is called simple aging in the
context of glassy systems �2�: C�t , tw� depends for large
times t and tw only on the scaling variable t / tw. This behavior
is rather well established by analytical works in various non-
random models �3�, and it has been corroborated by a large
amount of numerical work �2�.

Much less analytical results are available for disordered
ferromagnets, where numerical simulations thus play an im-
portant role. A recent numerical study of the relaxational
dynamics in two-dimensional random magnets �4� found evi-
dence for a power-law growth L�t�� t1/z of the aforemen-
tioned length scale L�t�. The dynamical exponent z turned
out to depend both on temperature T and disorder strength
and to behave as z�1/T at low temperatures T. The latter is
compatible with activated dynamics of pinned domain walls
over logarithmic free-energy barriers �rather than power law
�5��. The apparent existence of a single length scale that
grows algebraically was confirmed by a recent numerical
work �6�, where it was furthermore claimed that the response
function is well described by local scale invariance �7�. In
spite of this, the correlation function showed systematic
deviations from a simple t / tw scaling �6� �although
simple aging seems to work well in d=3 �8��. In �6�, the
autocorrelation was then compared to the scaling form
C�t , tw�� t−xc̃�t / tw�, which usually holds at a critical point
with x�0 �9�. However, a fit of this form to the numerical
data obtained in �6� �and to ours as we will report below�
yielded negative exponents x, which is unphysical. The aim
of this paper is to suggest an alternative picture originally
applied in the context of aging experiments in glasses �10�
and spin glasses �11�.

We study the site diluted Ising model �DIM� defined on

two-dimensional square lattice with periodic boundary con-
ditions, and described by the Hamiltonian

H = − �
�ij�

�i� jsisj , �1�

where si= ±1 are Ising spins, the �i’s are quenched, identical,
and independent random variables distributed according to
the probability distribution P���= p��,1+ �1− p���,0. Above
the percolation threshold p� pc, with pc	0.593 �12�, the
equilibrium phase diagram is characterized by a critical line
Tc�p� �with Tc�pc�=0� which separates a ferromagnetic phase
at low temperature T from a paramagnetic one at high T.
Here we focus on the relaxational dynamics of this system
�1� following a quench in the ferromagnetic phase, T
�Tc�p�. At the initial time t=0, up and down spins are ran-
domly distributed on the occupied sites when it is suddenly
quenched below Tc�p� where it evolves according to Glauber
dynamics �corresponding to the heat-bath algorithm� with
random sequential update, representing a discretized version
of model A dynamics, i.e., for nonconserved order parameter.

In the following we focus on the two-times t�0 autocor-
relation function C�t , tw� which is defined as

C�t,tw� =
1

L2�
i

�si�t + tw�si�tw�� , �2�

where �¯� and . . . stand for an average over the thermal
noise and the disorder, respectively, and where L is the linear
system size. In our simulations, L=512 and C�t , tw� is ob-
tained by averaging over 50 different disorder configurations.
In Fig. 1 we show a plot of C�t , tw� as a function of the time
difference t and for different waiting times tw. These data
were obtained for p=0.75 and T=0.7Tc�p=0.75�.

The data shown in Fig. 1 on a log-log plot suggest a
power-law behavior defining the off-equilibrium exponent �
�13�

C�t,tw� � t−�/z, t � tw �3�

which is, as we can see in Fig. 1 weakly dependent on tw. We
have checked that our simulations reproduce the well-known
values for the pure case, with zpure=2 �1� and �pure=1.25
conjectured to be exact in Ref. �14�. Figure 2 shows a plot of
� as a function of T /Tc�p� for p=0.75, 0.8, and 0.89.
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As we can see, ��T , p� depends rather weakly on T �in
contrast with z� and p. Besides, the obtained values violate
the lower bound proposed in Ref. �14�, �	d /2. Such a vio-
lation was also obtained analytically for random-field XY
model in d=2 �15�.

We now focus on the scaling form of C�t , tw� as a function
of both times t , tw. For nondisordered ferromagnets with
purely dissipative dynamics, one expects that C�t , tw� de-
pends only on the ratio ��t� / � �tw�, i.e.,

Cpure�t,tw� = Fpure���t�/ � �tw�� �4�

with ��t�� t1/2. This has been corroborated by numerical
simulations �2� as well as analytical results in exactly solv-
able limits �1,3�. As shown by Paul et al. �4�, a power-law
domain growth is also observed for the present disordered
system, which suggests to plot, here also, C�t , tw� as a func-
tion of t / tw: this is depicted in Fig. 3�a�.

Here one sees that this scaling form does not allow for a
good collapse of the curves for different tw. The deviation

from this scaling form is indeed systematic and we have
checked that the disagreement with such a scaling persists
even for larger waiting time tw. We have also obtained that
simulations for other values of p and T /Tc�p� show the same
deviations from t / tw scaling.

In Ref. �6� the random bond ferromagnet, which is ex-
pected to display qualitatively the same behavior as the DIM,
was studied and there, the autocorrelation was compared to
the scaling form

C�t,tw� = t−x�T,p�c̃�t/tw� �5�

which works well for critical dynamics �9� as well as some
disordered systems such as spin glasses in dimension d=3
�16� or an elastic line in random media �17� with a positive
exponent x�T , p��0. However, in Ref. �6� a negative value
for x�T , p� was obtained by fitting the data for C�t , tw� to Eq.
�5�. We also get a good data collapse for our data, as shown
in Fig. 3�b� when using a negative exponent x. The best
collapse according to Eq. �5� is obtained for x=−0.04�0
�for p=0.75 and T=0.7Tc�. The fact that x�0 would mean
that C�ytw , tw� grows without bounds when tw→
 �keeping
y�1 fixed�, which is unphysical. This implies that Eq. �5� is
not the correct scaling form for C�t , tw�, for which reason we
search for an alternative picture. First we point out that as tw
increases C�t , tw� clearly displays the formation of a plateau
�see Fig. 1�. This suggests an additive structure, as expected
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FIG. 1. �Color online� C�t , tw� plotted in the double logarithmic
scale as a function of t for different waiting times tw=10, 31, 100,
316, 1000, 105, and 106. Meq is the equilibrium magnetization com-
puted with the Swendsen-Wang algorithm �see below�. Data set is
obtained for p=0.75 at temperature T=0.7Tc.
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FIG. 2. �Color online� Exponent �, extracted using Eq. �3�, plot-
ted as function of the reduced temperature T /Tc�p�. These values,
which violate the lower bound �	d /2 has to be compared with the
one for the pure system �pure=1.25.
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FIG. 3. �Color online� �a� C�t , tw� as a function of t / tw for dif-
ferent tw=31, 100, 316, and 1000. �b� txC�t , tw� as a function of t / tw.
x=−0.04 is obtained from the best data collapse. Data set is ob-
tained for p=0.75 at temperature T=0.7Tc.
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in the ferromagnetic phase �and in contrast to the multiplica-
tive scaling found at Tc�p� in random ferromagnets �18��:

C�t,tw� = Cst�t� + Cag�t,tw� �6�

such that limt→
Cst�t�=0 and limt→
limtw→
C�t , tw�=Meq
2

where Meq is the equilibrium magnetization.
We first focus on the stationary component Cst�t� in Eq.

�6�, for which analytical predictions exist relying on droplet
models �19�. To study this part numerically, we first equili-
brate the system using the Swendsen-Wang algorithm �20�
and then let the system evolve according to Glauber dynam-
ics starting with such an equilibrated initial configuration.
We denote Ceq�t , tw� the �equilibrium� autocorrelation func-
tion �2� computed using this protocol and we have checked
that it is indeed independent of tw, Ceq�t , tw�
Ceq�t�.

In the inset of Fig. 4 we plot Ceq�t� as a function of t
for p=0.75 and T=0.7Tc. In agreement with previous
analytical predictions �19�, these data can be nicely fitted to
Ceq�t�=Cst�t�+Meq

2 with Meq
2 =0.925 and a power-law behav-

ior,

Cst�t� � At−��T,p�. �7�

This is depicted in Fig. 4, where we show a plot of Cst�t� as
a function of t for p=0.75 and T=0.7Tc, for these param-
eters, one finds �=0.40�2�.

We now come to the aging part Cag�t , tw� in Eq. �6�, by
first noticing that simple aging also does not hold for
Cag�t , tw�. Inspired by a picture originally suggested in the
context of aging experiments in glasses �10� and spin glasses
�11�, and also occurring within the analytical solution of the
nonequilibrium dynamics mean-field spin glasses �2�, we use
a form that generalizes Eq. �4�:

Cag�t,tw� 	 C�h�t�/h�tw�� . �8�

A widely used form for h�u�, which we choose here, is
h�u�=exp�u1−� / �1−��� where � allows us to interpolate be-
tween superaging ���1� and subaging ���1� via simple
aging ��=1�. In Fig. 5�a�, we show that this form with

�=1.035 allows for a nice collapse of the curves presented
in Fig. 1 for different tw, corresponding to p=0.75 and
T=0.7Tc. We point out that a good data collapse is also ob-
tained �with the same exponent �� when Cst�t� is not sub-
stracted. In Fig. 5�b� we show a plot of C�t , tw� as a function
of h�t� /h�tw� for p=0.75 and T=0.5Tc. For this temperature,
the best data collapse is obtained for a larger value of
�=1.042, which suggests that � is a decreasing function of T
�and one expects �→1 for T→Tc�. We would like to em-
phasize that the two-times scaling used in Fig. 5 is different
from Cag�t , tw�
C
�t / tw


 � with 
�1, but corresponds to the
superposition of infinitely many terms of the form C
�t / tw


 �
with some distribution of the exponent 
�1 �21� and is thus
a feasible scaling form.

In Ref. �22�, such a superaging behavior—with compa-
rable values of �—was also observed in the 4d Edwards
Anderson spin glass. There it was argued that superaging is
consistent with a growth law t�L� of the form

t�L� 	 �0Lzc exp���T�L�/T� , �9�

where zc is the dynamic critical exponent �and here zc
=2.1667�5� �23��, � is the barrier exponent, and ��T� a typi-
cal free-energy scale �vanishing at Tc�. If one assumes h�t�
=L�t� in Eq. �8� with t�L� as in Eq. �9� then one can identify
� /zc= ��−1� �22�. In our case this would give a T-dependent
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FIG. 4. �Color online� Cst�t� plotted in the double logarithmic
scale as a function of t. The line corresponds to �=0.4 in Eq. �7�.
Inset: Ceq�t� as function of t. Data set is obtained for p=0.75 and
T=0.7Tc.
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FIG. 5. �Color online� �a� Cag�t , tw� plotted as a function of
h�t� /h�tw� with h�t�=exp�t1−� / �1−��� for different tw=31, 100,
316, and 1000, with �=1.035. Data set is obtained for p=0.75 and
T=0.7Tc. �b� C�t , tw� plotted as a function of h�t� /h�tw� with �
=1.042. Data set is obtained for p=0.75 and T=0.5Tc.

SUPERAGING IN TWO-DIMENSIONAL RANDOM… PHYSICAL REVIEW E 75, 030104�R� �2007�

RAPID COMMUNICATIONS

030104-3



barrier exponent � �see Fig. 5�. In addition, the values ob-
tained for � from that relation are different from the exact
value �=1/4 �5�.

To conclude, we have performed a detailed numerical
study of the autocorrelation function during the coarsening
dynamics of diluted Ising ferromagnets in dimension d=2.
Our data show clear deviations from a simple t / tw scaling,
which were also observed in a recent work on a random
ferromagnet in d=2 �6�. However, attempts to fit the data to
the simple scaling form as in Eq. �5� leads, as in Ref. �6�, to
x�0, which is unphysical. Here we proposed an alternative
way of describing the dynamics in terms of superaging: this
allows for a consistent description of the autocorrelation
function in disordered ferromagnets. If our results reflect cor-

rectly the asymptotic scaling behavior of the autocorrelation
in two-dimensional disordered ferromagnets one would thus
conclude that it is not accurately described by local scale
invariance as in Ref. �24�. With regard to a recent experimen-
tal study of superaging in spin glasses �25�, it would be in-
teresting to understand whether the superaging behavior we
find is related to the choice of the initial conditions for the
dynamics.
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